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Klasyfikacja
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Przyklady algorytmow

- k-najblizszych sasiadow

- klasyfikator liniowy

- regresja logistyczna

- maszyny wektorow wspierajacych (ang. Support Vector Machines)
- drzewa decyzyjne (lasy)

- sleCl neuronowe




Estymacja rozkladu




Mieszanina rozktadow Gaussa




Mieszanina rozkladow Gaussa
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Przyklady algorytmow

- k-Srednich (ang. k-means) / centroidow

- mieszanina rozkladow Gaussa
- maksymalizacja oczekiwania (ang. Expectation—-Maximization)

- DBSCAN

sklearn.mixture.GaussianMixture
.BayesianGaussianMixture

- widmowa analiza skupien
- grupowanie twarde 1 miekkie

, . sklearn.cluster.Kmeans

* rozmyte c-Srednich (ang. fuzzy c-means) DESCAN

. .AgglomerativeClustering
‘ metOdy aglomeracwne .SpectralClustering
scipy.cluster.hierarchy.linkage
.dendrogram




Regresja
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Uogolnione modele liniowe
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Przyklady algorytmow

- regresja liniowa

- uogodlnione modele liniowe (ang. Generalized linear models)
- drzewa decyzyjne (lasy)

- regresja bayesowska

- maszyny wektorow wspierajacych (ang. Support Vector Machines)
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Fit() .predict()

- sleCl neuronowe




Model regresji jako klasytikator
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Model regresji jako klasytikator

Wiele klas
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Ujecie probabilistyczne klasyfikacji
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Przyklady algorytmow

- optymalny klasyfikator Bayesa
- naiwny klasyfikator Bayesa (ang. Naive Bayes Classifier)
- ukryte modele Markowa (ang. Hidden Markov Models)
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Metody bayesowskie

koncowy

p(Model)

\ 4

rozkltad a’posteriori

(ang. posterior)

przekonanie
rozktad a’priori
(ang. prior)
: Dane| Vodel) - p(M % =
p(‘\/m/(;/|Dane) - p( ane“ vut ) 'p(' 0d¢ ) S
p(Dane) ®,
N / \
%‘ Dane Model




Podstawowe zadania
uczenla maszynowego
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uczenie nadzorowane uczenie nienadzorowane
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—rozktad dedykowany
— estymator jadrowy
— mieszanina rozkladéw Gaussa

Uczenie maszynowe

Uczenie Uczenie
nadzorowane nienadzorowane

Regresja Klasyfikacja Grupowanie
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— regresja liniowa — k-najblizszych sasiadow

— uogblnione modele liniowe — k-Srednich

— rozmyte c-$rednich

—naiwny Bayes

—SVR —regresja logistyczna - -
— drzewa decyzyjne _SVM — mieszanina rozkltadow

— gleci . aussa
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— lasy losowe
— slecl neuronowe




Sposoby korzystania z bazy danych
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Parametryczne Nieparametryczne

Ustalona liczba parametrow Posta¢ modelu 1 liczba
parametrow zaleza od danych

klasyfikator liniowy k-NN

regresja liniowa 1
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Uczenie glebokie




Uczenie glebokie




Uczenie glebokie
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Uczenie glebokie
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Uczenie glebokie
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Uczenie glebokie

Uczenie , plytkie” Selekcja Uczenie
cech maszynowe

Model ,,ptytki”

Uczenie glebokie Uczenie

maszynowe

Model wielowarstwowy, hierarchiczny




Uczenie glebokie

Uczenie reprezentacji warstwowych i hierarchicznych LEARNING

Praca z jezykiem i bibliotekg

Model samodzielnie uczy sie cech

Uczenie transferowe

Przestrzen ukryta

Zdominowane przez siecl neuronowe

Mistyczna otoczka tego, ze technologia ta przypomina dzialanie moézgu




Dane, wiedza, modele 1 predykcje
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Czym jest uczenle maszynowe

- ang. machine learning learning # uczenie

- modelowanie statystycznych regularnosci w obserwacjach / pomiarach
- modelowanie danych vs modelowanie procesu

- dopasowanie modelu do danych (zadanie estymacji)

- Def. Proces automatycznego poszukiwania lepszej reprezentacji danych
w ramach zdefiniowanej przestrzeni mozliwosci

na podstawie sygnalu informacji zwrotnej




Dobry model




Jaki model jest dobry?
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kompromis obciazenie — wariancja
(ang. bias-variance dillema)

Ztozonos¢ modelu
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Im bardziej model elastyczny, tym lepiej dopasuje sie do aktualnych danych




Ztozonos¢ modelu

maly btad na danych uczacych nie gwarantuje malego btedu na nowych obserwacjach

przeuczenie / nadmierne dopasowanie / przetrenowanie (ang. overfitting)

- model mapuje jak slownik

niedouczenie / niedotrenowanie

(ang. underfitting)
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Ocena modelu = btad dopasowania

Regularyzacja

Model liniowy
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Metoda bootstrap

S (D*) S (D*?) S (D*F)  replikacje bootstrapowe

N — elementowe proby
bootstrapowe losowane
ze zwracaniem

Estymacja Monte-Carlo dokladnosSci wyznaczenia
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Walidacja krzyzowa
(ang. Cross-Validation — CV)

Testowanie

- Losowy podzial zbioru uczacego

- Wielokrotny podzial proby

- Oszacowanie bledu na zbiorze testujacym Wybor najlepszego Ocena
modelu modelu

(ang. model selection) (ang. model

assessment)
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Potok wydobywania wiedzy z danych




Potok wydobywania wiedzy z danych




Potok wydobywania wiedzy z danych




Potok wydobywania wiedzy z danych




Potok wydobywania wiedzy z danych




Skad sie biora aplikacje?

Aplikagje




Skad sie biora aplikacje?

Aplikagje

Programy




Skad sie biora aplikacje?

Aplikagje
Programy

Algorytmy




Skad sie biora aplikacje?

Aplikagje
Programy
Algorytmy

Metody




Skad sie biora aplikacje?
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Skad sie biora aplikacje?

Apifacic

analiza, algebra, statystyka, optymalizacja
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