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Klasyfikacja
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Wektor cech
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Petna informacja probabilistyczna

x,C
wektor cech etykiety klas p( ’ )
- (1)
{017027'“ 7CM}
Xx=| :
(5)
L p(x) - rozktad cech
p (:Al)yc) p(C) - rozktad klas
5 p(x|C') - rozktad cech w klasach
) (4)
x|C x|C) - p(C
p(x|C) p(C|x):p( C) - p(C)
p(x)




Optymalny algorytm Bayesa

p(x|C) - p(C)
p(x)

= arg max p(Cpn ) p(Clx) =
p(C|x) x p(x|Cin) - p(Crn)
log p(C|x) = log p(x|C') + log p(C) — logp(x)

funkcja dyskryminujaca: g (x) = log p(x|Cy,) + log p(Chyy)

powierzchnia rozdzielajaca (X\CT) p(Cr)

L] - p
/ granica decyzyjna : $ri(X) = gr(x) — 9;(x) =log———= + log———= =0
’ ! p(x|C;) p(C;)
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Co sie dzieje w przestrzeni cech



Przypominaj ka statystyczna

p(AB|C) = p(A|C) - p(B|AC)

p(B|A)
A - katar
O O B - kurs akgji O O

A - goraczka
B - bdle miesni
C - grypa
m Bezwarunkowa niezaleznos¢ A - podbite oko
B - rozcieta warga
Bl A C - béjka
i) m Warunkowa niezalezno$é
p(AB) = p(A) - p(B) Al B|C
lub ‘U’

p(A|B) = p(A) oraz p(B|A) = p(B) p(AB|C) = p(A|C) - p(B|C)

lub
p(A|B, C) = p(A|C) oraz p(B|4, C) = p(B|C)



Warunkowa niezaleznosS¢ cech
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Naiwny algorytm Bayesa

Optymalny algorytm Bayesa: m = arg max p(C,,|x) = argmax | p(x|Cy,) |- p(Cp)

Naiwnie zaktadamy niezaleznoS¢ cech w klasach

p(X|Cm) = p(x(l)|cm) .p($(2)|0m) T -p(:c(s)]Cm)

S
m = arg max p(C H[ (J)|C ] GaussianNB
m i1 BernoulliNB
jaki rozktad cech w klasach? MultinomialNB

()

dyskretne ciggte
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Algorytm k-najblizszych sgsiadow

m staty dostep do bazy danych

m drzewo poszukiwan




Drzewa decyzyjne

m Drzewa decyzyjne - dzielg dane na bloki

m Lasylosowe - dekorelacja drzew przez losowy wybor wierszy i kolumn (pakowanie w
worki, ang. bagging) + usrednianie predykcji

m Drzewa wzmacniane gradientowo - sekwencyjne uczenie na btedach poprzednika

Input: Age, Gender, Occupation, . . Does the person likes computer games
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Siecl neuronowe

Model warstwowy: sekwencja (mnozenie macierzy — nieliniowa transformacja), DAG
»,Neuron”: model liniowy + nieliniowa funkcja (tzw. funkcja aktywacji)

Layer1 Layer2 Layer3 Layer4

Original
input

Final
output
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Regresja logistyczna jako klasyfikator

jesli z; reprezentuje klase C,

w przeciwnym przypadku.
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Funkcja softmax dla wielu klas
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Kryterium jakosci
dla klasyfikatora wieloklasowego

ne
X : y = .
Kodowanie gorgco-jedynkowe klas (ang. one-hot encoding) ' :

Jezeli i-ta obserwacja X; jest z klasy C, to tylko yf ) — 1 a pozostate sg zerowe. ) )

Funkcja wiarygodnoSci:

(m)

N M
=TI I p™ =1xi.6)" = —logL(o Zzyf Hogp(y," = 1xi 0)

=1 m=1 =1 m=1

kategorialna entropia krzyzowa
(ang. categorical cross-entropy)

Zat.: klasy wzajemnie sie wykluczajg




Kryterium jakosci
dla klasyfikatora binarnego

Jezeli i-ta obserwacja X; jest z klasy C to y; = 1 w przeciwnym przypadku y; = 0.

Funkcja wiarygodnoSci:

Hp - 1’X“La |:1 _p(yz — 1|x’i79)}1_yé

Y
—log L(0) = — Z {y@ logp(y; = 1]x;,0) + (1 — y;) log [1 —p(ys = 1‘Xi79)]}

1=1

binarna entropia krzyzowa (ang. binary cross-entropy)




Btad | rodzaju

m Hipoteza zerowa jest prawdziwa,
ale ja

m  Wykrywam efekt, gdy go nie ma
m Fatszywy alarm (ang. False Positive)

m P(blgd I rodz.) to poziom istotnosci

Mylnie stwierdzona choroba
» Dobry lek nie dopuszczony do obrotu

Ukarano niewinng osobe

Btad Il rodzaju

1S THIS &'TIE[ OR THE AMERICAN NIGHTMARE? | 32

" °
~4 "
'Y Sensational OJ Simpson verdict stuns US

m Hipoteza zerowa jest fatszywa,
ale ja akceptuje

m Nie zauwazam efektu
m Przeoczenie (ang. False Negative)

m 11— P(blgd Il rodz.) to moc testu

Nie rozpoznana choroba
» Zty lek dopuszczony do obrotu

Uniewinniono sprawce

aulAzAdap Apdig
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https://www.re3data.org/repository/r3d100011260
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https://www.re3data.org/repository/r3d100011260
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https://www.re3data.org/repository/r3d100011260
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https://www.re3data.org/repository/r3d100011260

System klasyfikacji

Klasyfikator —+  prog decyzyiny o/




Ocena jakosci klasyfikacji

true positive false positive

Bird

Predykcja

false negative true negative D

https://labelyourdata.com/articles/object-detection-metrics

Pozytywna

Negatywna

Stan faktyczny

Pozytywna Negatywna

v/ X
P FP

fa/SZyWy a /a/’m

X v/
FN TN

Macierz pomytek
(ang. confusion matrix)


https://labelyourdata.com/articles/object-detection-metrics

Ocena jakosci klasyfikacji

TP
FP+ TP

Jak czesto przewidywania P sg trafne?
Czy poprawnie wykrywa?

Precyzja =

o TP
PethosSC = —
FN + TP
(ang. recall)

Jak czesto P sg trafnie przewidziane?

2

1 1
+

Precyzja  Petnosé

F, =

?Wzor?

Czy poprawnie ignoruje?

Stan faktyczny
" Pozytywna' Negatywna
§U%/ X
s <, TP FP
g 5
> SN - - - 2
e o -
g <X |
| :
) FN TN
)
Z
Petnosé !
odsetek
odsetek fatszywych
TP + TN trafien alarmow

TP + TN + FP + FN

(ang. accuracy)
Odsetek prawidiowych decyzji

— — —

Precyzja



100

Przyk’rad m m

Stan faktyczny

N

Pozytywna' Negatywna

m Czy klient zrezygnuje z subskrypcji? © | N | % \I ©
= i >
s oW TP=4 || FP=20 || &
5 zrezygnowato, model wykryt 4 z nich &) &'\; | ’ ] &
> ¥ — — — = — — — -
o : .
20 innych model wskazat, ale jednak nie zrezygnowali g g X 1R
S, :
T FN=1 | TN=75
4 Z
Precyzja =7 —4+20
Petnosé !
4 odsetek
Petnosé = ? — odsetek fatszywych
enosc 4 + 1 trafien alarmow

4+75
Doktadnosc = ? A4+754+20+1
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