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Wyktad 2. Analityczne metody optymalizacji
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Podstawy matematyczne

O OB

2.0 Przydatne definicje, wlasnosci




Podstawy matematyczne

Zadanie optymalizacji: x" — F(x") = mi@y F(x)

Minimum lokalne: Vg>05|xeo

g (x") < F(x)

Minimum globalne: V __, £ (x") < F(x)

F

Minimum
lokalne

Minimum
globalne



Podstawy matematyczne

Zbior wypukly: Vxl %7 A +(1-)x, €9, A1e<0,]1>

- zbiér wypukly ’ - zbiér niewypukly
F A

Funkcja wypukta: F(x,)

F(Ax, +(1-D)x,) S AF (x,)+(1-A)F(x,), Ae<01> F(x))




Podstawy matematyczne

Funkcja pseudo - wypukla:

(x=x) [V F(x)]20 = F(x)>F(x)

Zgodnie z rozwinieciem Taylor” a funkcji mamy:

F(x)=F(x))+(x— xO)T[VxF(xO)]+ OZQ‘x — xOH)

Funkcja quasi - wypukla:

7 ={xe Y :F(x)<a} - zbior wypukly




Podstawy matematyczne

Gradient:

Hessian:

ox"
OF

ox?

V.F(x)=

OF

H(x)= V2 F(x)=

ox)

2
X ( A)k

O’F
é(x(l) )2 axVox®
O°F O°F
ox@ox® a(x(z) )2
O*F 5°F
ax(S)ax(l) ax(S)ax@)




Podstawy matematyczne

Wilasnosci Hessjanu:
O°F  O°F
ox Do oD

Okreslonos¢ macierzy (Hessjanu)

H jest macierza symetryczna

Jezeli V x" Hx >0 to H jest dodatnio okreslony
X7 Vs

Jezeli ‘v’xio xT Hx < () to H jest ujemnie okreslony
S
Jezeli YV 20 xT Hx > (0 to H jest dodatnio p6t okreslony
X#Vg

Jezeli Y/ 20 x Hx<0 to H jest ujemnie p6t okreslony
X#Vs



Podstawy matematyczne

Kryterium Sylwestra:

H = [hy ]i=1,2,...,S - macierz Hessa
j=1,2,...,8

Jezeli Vs=1,2,...,S det(H )=det/|n ], . [>0  tomacierzHjest
7 L dodatnio okreslona
j=1,2,...,s

to macierz H jest
dodatnio poét okreslona

Jezeli ¥ {iy,iy, i e {,2, -, S} det| [y |y oy |20

1slps°

je{il NOTRE R }
Wartosci wlasne macierzy H
det(H—hI)=0 h,h,,....h; - wartosci wlasne macierzy H

Jezeli Vs=1,2,...,8 h,>0 tomacierz H jest dodatnio okreslona

Jezeli Vs=12,...,§ h 20 tomacierz H jest dodatnio p6t okreslona



- O°F O°F 0°F
8( +O )2 PMOEWeY PMOPWE)
O’F O’F O’F
H@=ViF@=| P (@) ~ axOa®
O*F 5*F  0'F
i an®ox®  ax®ox? a(x(S) )2




Typowe zadania decyzyjne

O OB




Typowe zadania decyzyjne

Zadanie decyzyjne bez ograniczer: 7] = R°

p(x)=0

e

»

);(1)

Zadanie decyzyjne z ograniczeniami
nierodwnosciowymi:

T ={x e R 1y, (0) < 0,y () <O,...,p7,, (x) <O

Zadanie decyzyjne z ograniczeniami

rownosciowymi: ;
‘é D ={xe R :0,(x)=0,0,(x)=0,...,0,(x) =0, L < S}

(1)

w,(x)<0
J Wy (x)<0

x)<0

v

M

=



Analityczne metody optymalizacji

s> Zadanie optymalizacji bez ograniczen

s> Zadanie optymalizacji z ograniczeniami rOwnosciowymi
- metoda wspotczynnikow Lagrange’a

so Zadanie optymalizacji z ograniczeniami
nierownosciowymi - metoda Kuhna-Tuckera
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Zadanie optymalizacji bez
ograniczen

O OB

2.1 Analityczne warunku optymalnosci




Zadanie optymalizacji bez ograniczeni

Zadanie optymalizagcji: x o F (x *) = min F (X)
xe =R5

Zatozenie: FF'(x) jest funkcja ciagla i rézniczkowalna.

Warunkiem koniecznym aby X " byto minimum lokalnym jest: 8
Os=1.]|¢S zer
V)CFV ('x ) e = OS ’ 0

Jezeli £'(X) jest funkcja pseudo - wypukla, powyzsze rownanie jest warunkiem
koniecznym i wystarczajacym aby X bylo minimum globalnym

Jezeli H (x) jest dodatnio p6t okreslona V x € R° to rozwigzanie
powyzszego rownania jest minimum globalnym

Jezeli H (x) jest dodatnio okreslona V x € R° powyzsze réwnanie ma jedno
rozwiazanie X ijest ono minimum globalnym

14



Zadanie optymalizacji bez ograniczeni

Réwnanie V/ i F(x)

— ()S moze mieé wiele rozwigzan
x*

F (x) 4

v

*

X

Warunki optymalnosci drugiego rzedu:

Jezeli H(x") jest dodatnio p6t okreslona w punkcie x°
to x” jest minimum lokalnym

Jezeli H ( x*) jest ujemnie p6t okreSlona w punkcie x*

to X" jest maksimum lokalnym
15



Przykiad 2.1.1

o F(x®M,x@) = S(x(l))z + (x(z))z — 4xWx (@) — 25 4 3

-aF(x(l),x(z))_
(1) ,(2) _ | ax® _ |10x M — 4x @) — O (D
479 VxF(X y X )|x=x*_ aF(x(1),x(2)) _[ ZX(Z)* x(l)* (2)
ax(l) i *

X=X
oz (2) > x@r = 2x (D=

o 7 (1) » 10x@®* —8x (W =2 - x(W* = 1 x@* = 2
o H(x) = Vg F(xW, x D) = [10 4]
s> detH;; = det[10] =10 > 0

w detH,, = det [140 ;] —20-16=4>0

so Macierz H(x) jest dodatnio okreslona zatem punkt x* = E] - minimum



Przykiad 2.1.2

F(xW,x®@) = a(x(l))z + (x(z))z —4xWx(@ —2x1W) 43

-aF(x(l),x(z))-
D) .(2) _ | ax® _ 200 @ — 4x @ —2f _ [O] (1)

e (0 x)] = [op e o) [ 2@ _ 41 ol @

| ax(l) =y
z (2) » x@* = 2x W+
7z (1) = 20x @ —gxW* =2 5 W = L @ = 224

a—4 a—4
H(x) = Ve F(x ™, x ) = [240‘ ;L]
detH;; = det[2a] =20 >0—->a >0
detH,, = det[24°‘ 3‘ —8a—16>0—a>2
1

Dla a > 2 macierz H(x) jest dodatnio okre$lona a punkt x* = 0‘;4 - minimum



Przyklad 2.1.2 c.d.

s> Dla a0 > 2 macierz H(x) jest dodatnio okreslona

so Punkt x* = - minimum « # 4 funkcji

2

| X—4 ]
o F(xW,x) = oc(x(l))z + (x(z))z — 4x W@ — 251 3




Przykiad 2.1.3

o F(x) =xTAx +bTx + ¢
s> A - macierz symetryczna, dodatnio okreslona

—all A2 "t AT
Apyq1 Aoy 7 s
o A = [aij]izl’zl...’s = . . . .
i=1,2,,S
g1 Qg2 -+ Ugsl]
[ (1) by ]
(2) b :
o x = [X7|, b=|"?| - S -wymiarowe wektory
xS bs

50 VeF ()| xmxr = Ve(xTAx + bTx + ¢ )|x=x* =0 |yoy



Przykiad 2.1.3 c.d.

(a11 Q12 7 Gas]
eeo e a
o xTAx — [x(1) X(Z) x(S)] a:21 a:22 . :25
|Agq1 Qs -+ Ussl|
o xTAx = Y3y Yiog aj x(Dx W)
A(xTAx)] o 9 S g N T
dx (1) o) (Zi=1 Zj=1 aij x l)x(J))
a(xTAx) 0 S S (D) ()
o Vp(xTAx) = 6x® ﬁ(ziﬂ z:j=.1 a;jx' Vx\)
9 %A 0 ¢S S | (D ()
i Eaxx(s)X)_ MO (Zi-s Q=1 X" Vx )

(D)

@

x(S)_




Przykiad 2.1.3 c.d.

x(l) (Zf 121 1 al] _X,'( l)x(]))

5o Ve (xTAx) = ax<z> (Xio1 X @it Ox0)

_ax(S) (Z J 1 Aij x l)x(]))

@S i)
j= 1 Ag1jX ])+Zl 1a11x()

S () (1)
o V(T Ax) = |2= 102X +Zl_ AjnX

i }9 1a5]x(1) +Zl— a51x(l)



Przykiad 2.1.3 c.d.

V'S +NDT r1res i)
j=101jX Zizlailx()
S (J) S (1)
122 Vx(xTAx) = |~j=1"2) + i=1 C.lzzx
S (i s (D)
! j=1a5jx(1)_ | 2uj=1 As1X " |
7 (xTAx) =
_all a12 alS- -x(l)- _a11 a21 aSl- -x(l)-
Ap1 Gz 7 G2s||@ @12 Qa2 77 Gs2{]4(2)
asq Asy; o+ Ass)lx®)] lagy as; - ass] xS

Ve(xTAx) = Ax + ATx = (A+ AT )x
dla A= AT Ve (xTAx) = 2Ax



Przykiad 2.1.3 c.d.

(1)

- bs] || = 5 0

¢ b'x=|b;y by, -+ bg] 2 b
5 (S) ]

9 S -
ax(l) (Zizl bix(J)) _bl_

a .
o U, (bTx) = m(folbixm) |m|_,

—axa(S) (Zfz 1 bix () )_




Przykiad 2.1.3 c.d.

o Ve(xTAx + bTx + ¢ )|x=x* = 2Ax* + b = 0Og

1 ,_
%)X*Z—EA 1b

5o H(x) = Vpy(xTAx + bTx + ¢ ) = V,(2Ax + b) =
2A

s> Macierz Hessa dodatnio okreSlona bo A jest dodatnio okreslona



Typowe zadania decyzyjne

Zadanie decyzyjne bez ograniczer: 7] = R°

MOR
@(x)=0

Zadanie decyzyjne z ograniczeniami

rownosciowymi: MO
‘a 9 = {x e R 1, (x)=0,0,(x)=0,...,0,(x) =0,L < S}

»

);(1)

Zadanie decyzyjne z ograniczeniami
nierodwnosciowymi:

T ={x e R 1y, (0) < 0,y () <O,...,p7,, (x) <O




Zadanie optymalizacji
Z ograniczeniami rOwnosciowymi
&V 3

2.2 Metoda mnoznikow Lagrange’a




Zadanie optymalizacji z ograniczeniami réwno$ciowymi

Metoda mnoznikéw Lagrange’ a

Zadanie optymalizacji: x~ — F(x") = Ipi£ F(x)

D ={xeR: 9(x)=0,0,(x)=0,...,0,(x)=0, L<S |

@C:{xe?{S: p(x)=0,, LSS}

= 1)

(%) | 0

0
o(x) = %,(x) 0,=|.|¢L— zer

K% (x)_ 0]

27



Zadanie optymalizacji z ograniczeniami réwnos$ciowymi

Metoda mnoznikéw Lagrange” a

s> Metoda wspotczynnikow Lagrange’ a

Funkcja Lagrange’a:

L
L(x,)=F(x)+ Y. 4p(x) = F)+ X 0(X) [p0]  [4”
=1 o, (x) /12 - wektor

gdzie: ¢(x)= ,A=| | wspolczynnikoéw
: - | Lgrange’ a
Warunki konieczne optymalnoSci: [ 9.(X)_ A,
V. L(x,A) . . =0,
V,L(x,2)| . . =0, < rank G(x)=rank [G(x) | -V _F(x)]

Gx)=[V.p(x) | V.o,(x) i = i V. g, (x)]

28



Zadanie optymalizacji z ograniczeniami réwno$ciowymi

Metoda mnoznikéw Lagrange’ a

Powyzszy uklad réwnan moze mie¢ wiele rozwigzan
Warunki optymalnosci drugiego rzedu:

Oznaczmy: H, (x) = VxxL(x, /1)

Jezeli H,(x") jest dodatnio okreslona w punkcie x"
to x” jest minimum lokalnym

Jezeli H , (x ") jest ujemnie okreslona w punkcie
to X" jest maksimum lokalnym x”

Jezeli funkcja I (x) jest wypukla, a ograniczenia sa liniowe czyli maja
posta¢ @, (x)=p, x—ca, =0, [=12,...,L to powyzszy uktad rownan
ma jedno rozwiazanie i jest ono rozwigzaniem optymalnym

29



Zadanie optymalizacji z ograniczeniami réwnos$ciowymi

Metoda mnoznikéw Lagrange” a

L(x, ﬂ,) = F(x)+ ﬂ,(o(x)
gdzie:
1 e R - wspoélczynnik Lagrange” a

Warunek konieczny optymalnosci:

V.L(x,A\) = V.F(x) + AV, p(x) =0

Ve F(x) = —AV,@(x)

aL(xl,xZ,)\) 0

V)\L(X, }\) = an

X0 @(x1,%2) = 0

30



Wyjasnienie warunkéw koniecznych

o X1, X = F(x1,x3) = min F(xq, x5)
X1,X2

s> Przy ograniczeniu @(x4,x,) = 0
o @(X1,X2) =0 - x5 = P(xg)
o Xp = F(x{,tp(x{)) = Igin F(xl,tp(xl))

dF (x1,P(x1)) _ aF(xsz)_l_aF(xsz) ap(xq) 0
129 — p—
axl axl axz dx1

s> Pochodna funkcji rozwiklanej

dp(x1,x2)
dqj(xl) —_ 6x1
P Tox, | 9e(1x2)

axz



Wyjasnienie warunkéw koniecznych

oF( o ) d@(x1,x2)
- X1,X2) | OF(X1,X2 0x1 — 0

o1 9, ETICZED)
axz
0F(x1,%x2)
axz
0 0ZNACZMY A = — o~
axz
0F (x X 0 X1,X
P ( 1 2)+}\ (p( 1 2) — 0
axl axl
OF (xq,x dp(xq,x
- (x4 2)+}\ P(x1,%32) =0
axz axZ

o Xy = Pxg) = @(xq,%2) =0



Wyjasnienie warunkéw koniecznych

22 L(lexZJ}\) — F(xl)xZ) + }\(p(lexZ)
o aL(xl,xz)\) — 0 N aF(xler) _I_}\ a(p(xler) — O

axl axl axl
. OL(x1,X3A) _ 0 - OF (x1,X2) Y 0@(x1,X2) _ 0
axz axz axz
OL(x1,Xx5,A)
3222 =05 (x,xp) = 0
s> Ogolnie;
V. L(x,A)|. . =04
V. L(x,/A) e =0




Zadanie optymalizacji z ograniczeniami réwnos$ciowymi

Metoda mnoznikéw Lagrange” a

L(x, ﬂ,) = F(x)+ ﬂ,(o(x)
gdzie:
1 e R - wspoélczynnik Lagrange” a

Warunek konieczny optymalnosci:

V.L(x,A\) = V.F(x) + AV, p(x) =0

Ve F(x) = —AV,@(x)

aL(xl,xZ,)\) 0

V)\L(X, }\) = an

X0 @(x1,%2) = 0

34



Zadanie optymalizacji z ograniczeniami réwnos$ciowymi

Metoda mnoznikéw Lagrange” a

s> Metoda Lagrange” a - Przykiad 2.2.1

x? a

F(x)= (x(”)2 + (x(z))z X

p(x)=xV +xP —4=0 /
o

L0 2)~ (0 (6] 20+ a) &

35



Przyklad 2.2.1

B L) = (x®) + (x@) 4+ Ax® + x@ — 4)

-
_ |ax®| _ [2xM 4+ A =[0] (1)
o BN = o | = o A] of (2
0x(2) ]
o BLEN) =2=x0+x@-4=0  (3)
wz (D)»x®==-2 7z (2)>x@=-7
A A _ —
mZ(l)—)(—E)+(—E)—4—O czyli A=-4

36



Przykiad 2.2.1 c.d.

- a1
79 VxL(X,A) — | oL | — Zx(z) + )J
10x (@)
921 0%L
92y @) xWox(2) 2 0
129 HL — Vxx L(x! A) — aﬁL i azLx - [0 2
|9x ()9 x (1) 02x(1)

79 d@tHLl]_: d@t[2]=2>0, dEtHLzz — [g g]=2X2=4>0
so Macierz Hj = [?) g] jest dodatnio okreslna

s Punkt x = [2] - minimum
2 37



Zadanie optymalizacji z ograniczeniami réwnos$ciowymi

Metoda mnoznikéw Lagrange” a

so Metoda wspoOtczynnikéw Lagrange’a - Przyklad 2.2.2
rozwiazanie nieregularne

(2) A
F() ="+ B
P(x)

o(x) = (x(z))2 — (x(l) — 1)3 =0

)

N2

SN

L(x,A)= ()c(l))2 + (x(z) )2 + i((x(z))z - (x(l) —1

38



Przyklad 2.2.2

2L = (x®) + (x@)+ )\((x(z))z + (x® — 1)3)

S
(1) _ (1) _
o TG = [0 < [0 - RGO -1 oy
e 2% @) 4 225 (2) 0 (2)
L 0X =7
_ 0L _ ( (2))? (1) 5 _
o ML) =—=(xP) +(xW-1)"=0 (3)

w0z (2) > 2(1+)xP=0 czyli x@=0,
oz (3) > (024 (x®=-1)" =0, czyli xV=1,
oz (1) = 2x® = 33 (x® = 1)*= 2x1-3A(1 — 1)2=2 % 0

o Sprzecznosc ?7?
39



Zadanie optymalizacji z ograniczeniami réwno$ciowymi

Metoda mnoznikéw Lagrange” a

s> Metoda wspolczynnikéw Lagrange’ a - wyjasnianie
L
V.L(x,2)=V F(x)+ Y AV @ (x) =0
[=1

GO =V § V() T D Ve ()]
V.F(x)+G(x)A=0 G(x)A=-V _F(x)
Rozwigzanie powyzszego rownania liniowego istnieje jezeli i jest jednoznaczne gdy:
rank G(x) = rank |[G(x) | -V _F(x)|=L

oraz niejednoznaczne gdy:

rank G(x) = rank |G(x) @ -V _F(x)|<L

40



so» Ax = b gdzie A — macierz (S X S),b — S wymiarowy wektor
s> rankA = rank | = Srozwiazanie jednoznaczne

s rankA = rank | < Srozwiagzanie niejednoznaczne

RN
o - o

s> rankA # rank | uklad rownan sprzeczny



Zadanie optymalizacji z ograniczeniami réwnos$ciowymi

Metoda mnoznikéw Lagrange” a

s> Wracamy do przyktadu 2.2.2

F(x)= (x(l))2 + (x(z) )2

@(x)

o(x) = (x(z))2 — (x(l) — 1)3 =0

)

N

42



Przyklad 2.2.2

2L = (x®) + (x@)+ )\((x(z))z + (x® — 1)3)

S
(1) _ (1) _
o TG = [0 < [0 - RGO -1 oy
e 2% @) 4 225 (2) 0 (2)
L 0X =7
_ 0L _ ( (2))? (1) 5 _
o ML) =—=(xP) +(xW-1)"=0 (3)

w0z (2) > 2(1+)xP=0 czyli x@=0,
oz (3) > (024 (x®=-1)" =0, czyli xV=1,
oz (1) = 2x® = 33 (x® = 1)*= 2x1-3A(1 — 1)2=2 % 0

o Sprzecznosc ?7?
43



... i
s> Wracamy do przyktadu 2.2.2

Fo=(0F (@ f o= -0 -1) =0
3(x<;(;) 1) hx B [0] lol

2
[G(X)E—VxF(x)]=[ngo(x)E—VxF(x)]=[3(x(1)_1) ;Zx(l)h 0 2

G(x) = [Vxp()] =

x‘lol 00

rzadG(x) = rzad [8] =0

@ 2x@

rzad|G(x) : =V, F(x)] = rzad lg (2) =1,

rzadG(x) # rzad|[G(x) : =V,F(x)] - punkt x* = l(l)] — rozwigzanie nieregularne



Zadanie optymalizacji z ograniczeniami réwnos$ciowymi

Metoda mnoznikéw Lagrange” a

Jezeli F(x) jest funkcja ciggtly, r6zniczkowalng i wypukla oraz ograniczenia
@,(x),0,(x),...,0,(x) sa liniowe to uktad rownan:

V.L(x,2) . . =0
V,L(x, ). . =0,

ma jedno rozwigzania i jest ono rozwigzaniem zadania optymalizacji z
ograniczeniami rOwnosSciowymi.

Powyzszy uktad réwnan w tym przypadku jest warunkiem koniecznym i
wystarczajacym

45



Zadanie optymalizacji z ograniczeniami réwnos$ciowymi

Metoda mnoznikéw Lagrange” a

Uogodlniona metoda wspotczynnikow Lagrange’ a

Uogoélniona funkcja Lagrange’ a:

L6 2 2) = 2gF () + 3 4 ()

: : . I=1
Warunki konieczne optymalnosci:

V L(x,A,4,) =0
V,L(x,1,4,) =0,

46



Zadanie optymalizacji z ograniczeniami réwno$ciowymi

Metoda mnoznikéw Lagrange’ a

so Uogolniona metoda wspoélczynnikoéw Lagrange” a

L
V. L(x,A,4) = A4V F(x)+ > AV ¢,(x) =0
[=1

L L
1° 2,20 V_F(x)+ Z%vx@ (x)=05 = V. F(x)+ > A4V ¢,(x) =0
=1 7% /=1

L
A =1 V. F(x)+ Z AV ¢,(x)=0, -ztego warunku otrzymamy
’ [=1 rozwigzania regularne
20 ZO =0 Z AV ¢,(x) =0 -ztego warunku otrzymamy rozwiazania
=1 nieregularne

Podobnie jak poprzednio otrzymane rozwigzania wymagaja zbadania
warunkoéw drugiego rzedu czyli zbadania okreslonosci macierzy:

H,(x,A,4)=V> L(x,A,,).

47



Zadanie optymalizacji z ograniczeniami réwnos$ciowymi

Metoda mnoznikéw Lagrange” a

Uogodlniona metoda wspoétczynnikow Lagrange’a
Przykiad 2.2.2

F(x)= (x(l))2 + (x(z) )2

@(x)

o(x) = (x(z))2 — (x(l) — 1)3 =0

)

N

48



Przyklad 2.2.2

Y T

-
2
2 220x @ + 226 @ ol (2
o KLY =2 = (x@)" + (x® - 1)" = 0 (3)

79 Dla AO =1

- oL
50 VxL(J‘C, A) = 9x™) lzx(l) o 37&(3((1) - 1 ] [0] (1)

oL
5 2%x@) 1 22 @) (2)

> Jak poprzednio - sprzecznos¢
49




Przyklad 2.2.2

2 L(x,)) = }\0 ((x(1))2 n (x(z))Z) n }\((x(z))z + (x(l) — 1)3)
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Pol A (@) 0 (2)

o 7z (1) = 3A(xW — 1)2=0 czvlix®M =1,202) 5>x@ =0



Przyklad 2.2.2

s
5" el B [Zhox(l) — 3 (x® — 1)2]

so V.L(x,A) =
! oL
—® 220x D) + 22x(2)
0°L 0%L
_ | 92x@ axWoax@ | _
L 9x(2)9x (1) 92x(1) |

[0 0
0 2

_[2h — oA (x™ - 1) 0
" 0 2% + 22

> Macierz Hj, jest dodatnio po6t okreslona

so Punkt x = [(1)] - minimum .



Dziekuje za uwage
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