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Nie ma takiej 
nierówności !!!
Tak się umawiamy
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Warunki konieczne optymalności:

Funkcja Lagrange’ a:
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 𝐿𝐿 𝑥𝑥,µ = 𝑥𝑥 1 − 2
2

+ 𝑥𝑥 2 − 2
2

+µ1 𝑥𝑥 1 − 1 + µ2 𝑥𝑥 2 − 1

 𝛻𝛻𝑥𝑥𝐿𝐿 𝑥𝑥,µ =
2 𝑥𝑥 1 − 2 + µ1

2 𝑥𝑥 2 − 2 + µ2
= 0

0
1
2

 µ𝑇𝑇𝛻𝛻µ𝐿𝐿 𝑥𝑥,µ ~ �
µ1 𝑥𝑥 1 − 1 = 0
µ2 𝑥𝑥 2 − 1 = 0

3
4

 𝛻𝛻µ𝐿𝐿 𝑥𝑥,µ = �
𝑥𝑥 1 − 1 ≤ 0
𝑥𝑥 2 − 1 ≤ 0

 5
 6

 µ= �µ1 ≥ 0
µ2 ≥ 0                        7

 8                                             



 10  µ1 = 0 (𝑥𝑥 1 − 1 < 0 ? ? ),µ2 = 0 (𝑥𝑥 2 − 1 < 0 ? ? ), 
z  1 →  2 𝑥𝑥 1 − 2 = 0 → 𝑥𝑥 1 = 2
z  2 →  2 𝑥𝑥 2 − 2 = 0 → 𝑥𝑥 2 = 2
z  5 → 2 − 1 = 1 ≥ 0 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑧𝑧 5
z  6 → 2 − 1 = 1 ≥ 0 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑧𝑧 6

 20  µ1 > 0 (𝑥𝑥 1 − 1 = 0 ? ? ),µ2 = 0 (𝑥𝑥 2 − 1 < 0 ? ? ), 
z  3 → µ1 𝑥𝑥 1 − 1 = 0/µ1 → 𝑥𝑥 1 − 1 = 0 → 𝑥𝑥 1 = 1
z  1  → 2 1 − 2 + µ1 = 0 → µ1=2
z  2 →  2 𝑥𝑥 2 − 2 = 0 → 𝑥𝑥 2 = 2
z  6 → 2 − 1 = 1 ≥ 0 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑧𝑧 6



 30  µ1 = 0 𝑥𝑥 1 − 1 < 0 ? ? ,µ2 > 0 (𝑥𝑥 2 − 1 = 0 ? ? ), 
z  1 →  2 𝑥𝑥 1 − 2 = 0 → 𝑥𝑥 1 = 2
z  5 → 2 − 1 = 1 ≥ 0 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑧𝑧 5
z  4 → µ2 𝑥𝑥 2 − 1 = 0/µ1 → 𝑥𝑥 2 − 1 = 0 → 𝑥𝑥 2 = 1
z  2  → 2 1 − 2 + µ2 = 0 → µ2=2

 40  µ1 > 0 𝑥𝑥 1 − 1 = 0 ? ? ,µ2 > 0 (𝑥𝑥 2 − 1 = 0 ? ? ), 
z  3 → µ1 𝑥𝑥 1 − 1 = 0/µ1 → 𝑥𝑥 1 − 1 = 0 → 𝑥𝑥 1 = 1
z  1  → 2 1 − 2 + µ1 = 0 → µ1=2
z  4 → µ2 𝑥𝑥 2 − 1 = 0/µ2 → 𝑥𝑥 2 − 1 = 0 → 𝑥𝑥 1 = 1
z  2  → 2 1 − 2 + µ2 = 0 → µ2=2

Punkt  𝑥𝑥 = 1
1  spełnia równania i jest rozwiązaniem zadania
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Warunki konieczne optymalności:

Funkcja Lagrange’ a:
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⇔ gdy rozwiązanie jest regularne

gdzie:
- wektor
  współczynników
  Lgrange’ a
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Przykład 2 – rozwiązanie nieregularne
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 𝐿𝐿 𝑥𝑥,µ = 𝑥𝑥 1 − 2
2

+ 𝑥𝑥 2 − 2
2

+µ1 𝑥𝑥 2 + 𝑥𝑥 1 − 1
3

− µ2𝑥𝑥 2

 𝛻𝛻𝑥𝑥𝐿𝐿 𝑥𝑥,µ = 2 𝑥𝑥 1 − 2 + 3µ1 𝑥𝑥 1 − 1
2

2 𝑥𝑥 2 − 2 + µ1 − µ2
= 0

0
1
2

 µ𝑇𝑇𝛻𝛻µ𝐿𝐿 𝑥𝑥,µ ~ �
µ1 𝑥𝑥 2 + 𝑥𝑥 1 − 1

3
= 0

−µ2𝑥𝑥 2 = 0

3
4

 𝛻𝛻µ𝐿𝐿 𝑥𝑥,µ = �𝑥𝑥 2 + 𝑥𝑥 1 − 1
3

≤ 0
−𝑥𝑥 2 ≤ 0

 5
 6

 µ= �µ1 ≥ 0
µ2 ≥ 0                        7

 8                                             



 Powyższy układ równań i nierówności należy 
rozwiązywać jak poprzednio przyjmując odpowiednie 
µ1 oraz µ2. Dla wszystkich przypadków otrzymamy 
sprzeczność.

 Pokażmy że rozwiązanie  𝑥𝑥 = 1
0  widoczne na ilustracji 

graficznej nie spełnia układu równań i nierowności



 Dla 𝑥𝑥 = 1
0  otrzymujemy

 𝛻𝛻𝑥𝑥𝐿𝐿 𝑥𝑥,µ = 2 1 − 2 + 3µ1 1 − 1 2 = −2 ≠ 0 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2 0 − 2 + µ1 − µ2 = 0

1
2

 µ𝑇𝑇𝛻𝛻µ𝐿𝐿 𝑥𝑥,µ ~ �µ1 0 + 1 − 1 3 = 0
−µ20 = 0

3
4

 𝛻𝛻µ𝐿𝐿 𝑥𝑥,µ = �0 + 1 − 1 3 ≤ 0
−0 ≤ 0

 5
 6

 µ= �µ1 ≥ 0
µ2 ≥ 0                        7

 8          

Rozwiązanie nieregularne                
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Uwaga: Nie każdy kierunek, który spełnia warunek                               jest kierunkiem 
dopuszczalnym.                              Może to prowadzić do rozwiązania nieregularnego
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Twierdzenie Kuhna – Tuckera – warunki konieczne optymalności:
Jeżeli x* jest minimum lokalnym zadania z ograniczeniami nierównościowymi, 

funkcje                                      są ciągłe oraz funkcja F  jest różniczkowalna to 
istnieje zestaw współczynników Lagrange’a µ* takich że wraz z x*  spełnia

Funkcja Lagrange’ a:
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1. Karlina: ograniczenia                                             - liniowe( ) ( ) ( )xxx Mψψψ ,,, 21 

2. Slatera: ograniczenia                                             - wypukłe oraz zbiór rozwiązań
                   dopuszczalnych ma niepuste wnętrze

( ) ( ) ( )xxx Mψψψ ,,, 21 

3.Fiacco – Mac Cormica: w punkcie optymalnym gradienty wszystkich ograniczeń
                    aktywnych są liniowo niezależne, czyli:
                                                                                         są liniowo niezależne( ) ( ) ∗=

∗∗ ∇∈∀ xxmx xxIm ψ
4. Zangwila: )()( ∗∗ = xDxD

5. Kuhna – Tucker’a: dla każdego kierunku                     istnieje krzywa regularna
                     rozpoczynająca się w punkcie        i styczna do tego kierunku
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1 xxx x

x

x ψψ

Ograniczenie 1 i 2 są aktywne

Gradienty ograniczeń sa liniowo zależne

W punkcie warunek Fiacco – Mac Cormica 
nie jes spełniony  

Rozwiązanie 
nieregularne



Warunki konieczna i wystarczające: 
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Jeżeli funkcje                                                      są ciągłe i różniczkowalne oraz 
funkcja           jest funkcją pseudo – wypukłą, a ograniczenia 
są funkcjami quasi – wypukłymi to układ równań i nierówności:

( ) ( ) ( ) ( )xxxxF Mψψψ ,,,, 21 

ma jedno rozwiązanie i jest ono rozwiązaniem zadania optymalizacji z 
ograniczeniami nierównościowymi
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F 𝑥𝑥, 𝑦𝑦

𝑦𝑦

x
𝑥𝑥∗, 𝑦𝑦∗

𝑥𝑥∗, 𝑦𝑦∗Punkt siodłowy 

𝐹𝐹 𝑥𝑥∗, 𝑦𝑦∗ ≤ 𝐹𝐹 𝑥𝑥, 𝑦𝑦∗ ∀𝑥𝑥 ∈ R𝑆𝑆

                      F 𝑥𝑥∗, 𝜇𝜇 ≤ 𝐹𝐹 𝑥𝑥∗, 𝑦𝑦∗  ∀𝑦𝑦 ∈ R𝐿𝐿

𝐹𝐹 𝑥𝑥∗, 𝑦𝑦∗ = min
𝑥𝑥∈D(𝑥𝑥)

max
𝑦𝑦≥0𝑀𝑀

𝐹𝐹 𝑥𝑥, 𝑦𝑦
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( )∗∗ µ,x ( ) ⇔≥∈ Mxx 0),( µDPunkt              jest punktem siodłowym  
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ψ

µ

Jeżeli              jest punktem siodłowym funkcji  Lagrange’a  L(x,µ) to jest 
rozwiązaniem zadania optymalizacji:   

( )∗∗ µ,x

)(min)( xFxFx
xx D∈

∗∗ =→

{ }0)(,,0)(,0)(: 21 ≤≤≤∈= xxxx M
S

x ψψψ RD
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{ }MS
S

x xxx 0)(,0: ≤≥∈= ψRD

( ) ( ) ( )xxFxL Tψµµ +=,

D 𝑥𝑥 = 𝑥𝑥 ∈  R𝑆𝑆:ψ 𝑥𝑥 ≤ 0𝑀𝑀, −𝑥𝑥 ≤ 0𝑆𝑆

𝐿𝐿 𝑥𝑥. �,µ′ = 𝐹𝐹 𝑥𝑥 +µ𝑇𝑇ψ 𝑥𝑥 − µ′𝑇𝑇𝑥𝑥

Warunki Kuhna-Tuckera



𝐿𝐿 𝑥𝑥,µ,µ′ = 𝐹𝐹 𝑥𝑥 +µ𝑇𝑇ψ 𝑥𝑥 − µ′𝑇𝑇𝑥𝑥

𝛻𝛻𝑥𝑥𝐿𝐿 𝑥𝑥, �,µ′ = 𝛻𝛻𝑥𝑥𝐹𝐹 𝑥𝑥 + �
𝑚𝑚=1

𝑀𝑀

µ𝑚𝑚𝛻𝛻𝑥𝑥ψ𝑚𝑚 − µ′ = 0𝑆𝑆

µ𝑇𝑇𝛻𝛻µ𝐿𝐿 𝑥𝑥, �,µ′ = µ𝑇𝑇ψ 𝑥𝑥 = 0

µ′𝑇𝑇𝛻𝛻µ′𝐿𝐿 𝑥𝑥, �,µ′ = µ′𝑇𝑇𝑥𝑥 = 0

𝛻𝛻µ𝐿𝐿 𝑥𝑥, �,µ′ = ψ 𝑥𝑥 ≤ 0𝑀𝑀

𝛻𝛻µ′𝐿𝐿 𝑥𝑥, �,µ′ = −𝑥𝑥 ≤ 0𝑆𝑆

µ ≥ 0𝑀𝑀, µ′ ≥ 0𝑆𝑆

µ,

µ,

µ,

µ,

µ,
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( ){ }ML
S

x xxx 0)(,0: ≤=∈= ψϕRD

( ) ( ) ( ) ( )xxxFxL TT ψµϕλµλ ++=,,

D 𝑥𝑥 = 𝑥𝑥 ∈  R𝑆𝑆: φ 𝑥𝑥 ≤ 0𝐿𝐿∩ −φ 𝑥𝑥 ≤ 0𝐿𝐿 ,ψ 𝑥𝑥 ≤ 0𝑀𝑀

𝐿𝐿 𝑥𝑥, λ′, λ,µ = 𝐹𝐹 𝑥𝑥 +λ𝑇𝑇φ 𝑥𝑥 −λ′𝑇𝑇 φ 𝑥𝑥 +µ𝑇𝑇ψ 𝑥𝑥

Warunki Kuhna-Tuckera

φ 𝑥𝑥 = 0𝐿𝐿 ≡ φ 𝑥𝑥 ≤ 0𝐿𝐿∩ −φ 𝑥𝑥 ≤ 0𝐿𝐿



𝛻𝛻𝑥𝑥𝐿𝐿 𝑥𝑥, λ, λ′,µ =

= 𝛻𝛻𝑥𝑥𝐹𝐹 𝑥𝑥 + �
𝑙𝑙=1

𝐿𝐿

λ𝑙𝑙𝛻𝛻𝑥𝑥φ𝑙𝑙 𝑥𝑥 − �
𝑙𝑙=1

𝐿𝐿

λ′
𝑙𝑙𝛻𝛻𝑥𝑥φ𝑙𝑙 𝑥𝑥 + �

𝑚𝑚=1

𝑀𝑀

µ𝑚𝑚𝛻𝛻𝑥𝑥ψ𝑚𝑚 𝑥𝑥 = 0𝑆𝑆

µ𝑇𝑇𝛻𝛻µ𝐿𝐿 𝑥𝑥, λ, λ′,µ = µ𝑇𝑇ψ 𝑥𝑥 = 0
λ′𝑇𝑇𝛻𝛻λ′𝐿𝐿 𝑥𝑥, λ, λ′,µ = −λ′𝑇𝑇φ 𝑥𝑥 = 0

𝛻𝛻µ𝐿𝐿 𝑥𝑥, λ, λ′,µ = ψ 𝑥𝑥 ≤ 0𝑀𝑀

λ ≥ 0𝐿𝐿 , λ′ ≥ 0𝐿𝐿 ,µ ≥ 0𝑀𝑀

λ𝑇𝑇𝛻𝛻λ𝐿𝐿 𝑥𝑥, λ, λ′,µ = λ𝑇𝑇φ 𝑥𝑥 = 0

𝛻𝛻λ𝐿𝐿 𝑥𝑥, λ, λ′,µ = φ 𝑥𝑥 ≤ 0𝐿𝐿

𝛻𝛻λ′𝐿𝐿 𝑥𝑥, λ, λ′,µ = −φ 𝑥𝑥 ≤ 0𝐿𝐿
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Mogą pojawić się problemy analityczne:

ψϕ,,F - złożone funkcje nieliniowe

)dim(x - duży wymiar

ψϕ,,F - funkcje nieróżniczkowalne

F - analityczna postać funkcji nie jest znana, a istnieje 
możliwość pomiaru wartości funkcji w punkcie x

Powyższe przesłanki skłaniają do poszukiwania metod numerycznych 
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